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Cloud attractors are predicted to exist in simple
invertible systems. The explicit noodle map (a three-di-
mensional diffeomorphism) and several 4-variable ODEs
(describing chemical reactors) provide candidates. A
“widely spaced” Lyapunov spectrum (+, —&, —) may in
general warrant a numerical search.

The first explicit example of a cloud attractor (in a 3-D
non-invertible map) is due to Kaplan and Yorke [1]. The
basic idea how to generate such attractors is due to Julia
[2]. Julia realized that the locally self-similar basin bound-
aries he had found in 2-D noninvertible analytic maps [2]
can be inverted by means of a trick, yielding attractors of
the same shape. The trick is to switch randomly between
the two nonunique inverses [2, 3]. Nonanalytic (real) 2-D
maps with Julia-like boundaries — see [4] for a first pro-
posed example — can obviously be inverted in the same way.
Since a third (chaotic) variable is needed to generate the
random switching, again a 3-D noninvertible map arises.

The very same principle has already been used to
advantage by Barnsley and Harrington [5]. They inverted
noninvertible real maps made up of several expanding
pieces (piecewise-linear 2-D maps), obtaining maps con-
sisting of several alternative contracting pieces to be
subjected to the random switching. The resulting attractors
can be tailor-made to match any preconceived self-similar
fractal pattern (“collage theorem” [6]).

What is the explanation for the resulting shapes? Are
there “strong” and “weak” versions to be distinguished?
What is he connection to ordinary (invertible) dynamical
systems?

Barnsley [6] already saw that the random switching can in
principle be done by a third (chaos-generating) variable in
such a way that the resulting overall 3-D map is in-
vertible — a generalized Smale solenoid [7]. This pre-
supposes that all radial cross-sections through the ring-
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shaped map are identified conceptually. The cloud thus
only arises as a projection: no individual cross-section
through the attractor displays a connected set. Apart from
this “weak” possibility as it may be called, “strong”
invertible cloud attractors must also exist — in 4-D in-
vertible maps. Accordingly, weak cloud attractors can be
expected to be found in 4-variable, and strong ones in
S-variable flows (like chemical ODEs). So far, not a single
example of either kind has been seen, either in an explicit
map orin a flow.

Very recently it was proposed that Julia boundaries
arise whenever a hyperchaotic attractor is punctured by
two or more adjacent basins [8]. According to this global-
analytic interpretation, Julia boundaries are generalized
“frontiéres floues” (fuzzy boundaries) in the sense of Mira
[9]. (Mira had only considered the lower-dimensional, 2-D
case; cf. also McDonald etal. [10] and Ling [17].) Julia
boundaries therefore necessarily have a saddle structure in
general (except in the noninvertible lower-dimensional limit
considered by Julia). They therefore by definition should no
longer yield attractors when time-inverted. This conclusion
nevertheless is premature since chaotic attractors too in-
volve unstable (saddle) structures without ceasing to be
attractors.

What is the recipe to generate Julia attractors in in-
vertible systems? Only the weak case (3-D maps/4-D
flows) is to be considered in the following. The answer is:
Prepare a noodle map.

There are two types of nontrivial invertible maps in
3 D, the folded-towel (or pancake) map, and the stretched
stocking (or noodle) map [11]. The former has two positive
Lyapunov characteristic exponents since there are two
independent directions of repetitive stretching involved
(hyperchaos [12]), the latter has only one and therefore at
first sight appears to belong to the class of ordinary chaotic
systems. This conclusion would be misleading, however,
since the intrinsic complexity is the same: Every nontrivial
noodle map becomes a folded-towel map under time
inversion and vice versa [11]. The simplest example of a
noodle map is the Smale solenoid [7], but with three rather
than 2 windings of the first iterate inside. As it happens,
Barnsley’s solenoid [6] also belongs into this category — if
more than two submaps take part in the switching.

If a doubly punctured folded-towel map generically
yields a Julia boundary [8], this is tantamount to saying
that a lengthwise contracting (time-inverted) noodle map,
hidden in the expanding folded-towel map, generates a
Julia boundary when made part of a basin boundary. Its
temporal inverse, a lengthwise expanding (ordinary) noodle
map, therefore generates a time-inverted Julia boundary.
Can it be attracting?

It can only be attracting if the lengthwise expanding
noodle map contains an attractor, a noodle-map attractor
(see [13, 14] for examples). Unfortunately, the introduction
of volume contraction renders the formation of sheet-like
structures impossible in a crossection perpendicular to the
expanding direction. On the one hand, there is only con-
traction left in two directions; on the other, the “skins™ of
2 successive images (think of a covering initial box and its
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image) can never remain in touch in the interior of the
preimage; this excludes even “perforated” tissue bridges
there. Thus even with a knotted map (with infinitely
many internal knots generated) everything will appear
neatly separate locally in a cross section. Neverthe-
less there is a difference between “no entangling” and
an entangling that “does its best” to cover the whole
former separatrix even if not quite succeeding in doing so.

The condition is that the two negative exponents in-
volved in generating the (in a cross-section) contracting
noodle are not more or less equal (determining something
like a spaghetti) but rather are markedly different (“flat-
ness condition™). Specifically, cap-like coverings of one
portion of the noodle by the other have to occur (“inter-
locking without touching”), in order then to be repeated
at all resolutions within themselves again and again.

The present prediction will be easy to test numerically.
A noodle diffeomorphism with constant Jacobian deter-
minant is available [13] (also [14]) in which the two con-
tracting components can be manipulated independently.

[1] J. L. Kaplan and J. A. Yorke, Chaotic behavior of
multidimensional difference equations, in Functional
Differential Equations and Approximation of Fixed
Points, Springer-Verlag Lect. Not. Math. 730,
204-227 (1979). See Figure 3.

] G. Julia, J. Math. Pures et Appl. 4,47 (1918).

] H. A. Lauwerier, Two-dimensional iterative maps,
in Chaos, A. V. Holden, Ed., Manchester University
Press, Manchester 1986, pp. 58 —95.

[4] W. Metzler, The route to chaos of two coupled logistic
maps, Paper presented at Dynamics Days, La Jolla,
January 7-10, 1986.

[5] M. F. Barnsley and A. N. Harrington, Physica 15D,
421 (1985).

[6] M. F. Barnsley, Making dynamical systems to order,
Georgia Institute of Technology, Atlanta, Preprint
July 1985.

[7] S. Smale, Bull. Amer. Math. Soc. 73, 747 (1967).

[8] O. E. Rassler, C. Kahlert, J. Parisi. J. Peinke. and
B. Réhricht, Z. Naturforsch. 41 a (1986).

[9] C. Mira, C. R. Acad. Sci. Paris A 288, 591 (1979).

W

Notizen

As to invertible flows an analogous prediction can be
made. In such nonlinear systems (like 4-variable reaction-
kinetic systems), frequently a spectrum of “widely spaced”
Lyapunov characteristic exponents is found: one positive,
one large negative, one zero, and one small negative: see
[15,16] for 2 examples. (Strangely, two positive Lyapunov
exponents so far eluded detection in the same systems.)
These systems apparently possess nontrivial noodle maps
of the flat type for their cross sections. Again, detailed (if
time-consuming) numerical studies of these attractors
appear to be worth while.

To conclude, analogues to Julia boundaries occurring in
invertible systems will form intriguing objects of study —
and so will their attracting cousins.
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